Small into-isomorphisms between spaces of continuous functions. II
نویسندگان
چکیده
منابع مشابه
Isomorphisms between Spaces of Vector-valued Continuous Functions
A theorem due to Milutin [12] (see also [13]) asserts that for any two uncountable compact metric spaces Qt and Q2> t n e spaces of continuous real-valued functions C ^ ) and C(Q2) are linearly isomorphic. It immediately follows from consideration of tensor products that if X is any Banach space then QQ^X) and C(Q2;X) are isomorphic. The purpose of this paper is to show that this conclusion is ...
متن کاملWeight-preserving isomorphisms between spaces of continuous functions: The scalar case
Let F be a finite field and let A and B be vector spaces of F-valued continuous functions defined on locally compact spaces X and Y , respectively. We look at the representation of linear bijections H : A −→ B by continuous functions h : Y −→ X as weighted composition operators. In order to do it, we extend the notion of Hamming metric to infinite spaces. Our main result establishes that under ...
متن کاملP-adic Spaces of Continuous Functions II
Necessary and sufficient conditions are given so that the space C(X, E) of all continuous functions from a zero-dimensional topological space X to a nonArchimedean locally convex space E, equipped with the topology of uniform convergence on the compact subsets of X, to be polarly absolutely quasi-barrelled, polarly אo-barrelled, polarly `∞-barrelled or polarly co-barrelled. Also, tensor product...
متن کاملIsomorphisms of Spaces of Continuous Affine Functions on Compact Convex Sets with Lindelöf Boundaries
Let X, Y be compact convex sets such that every extreme point of X and Y is a weak peak point and both extX and extY are Lindelöf spaces. We prove that, if there exists an isomorphism T : Ac(X) → Ac(Y ) with ‖T‖ · ‖T‖ < 2, then extX is homeomorphic to extY . This generalizes results of H.B. Cohen and C.H. Chu.
متن کاملSpaces of Continuous Functions
Let X be a completely regular topological space, B(X) the Banach space of real-valued bounded continuous functions on X, with the usual norm ||&|| =supa?£x|&(#)| • A subset GCB(X) is called completely regular (c.r.) over X if given any closed subset KQ.X and point XoÇzX — K, there exists a ô £ G such that &(#o) = |NI a n ( i sup^^is: \b(x)\ <||&||. A topological space X is completely regular in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1983
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1983-0694391-9